a2zpapers.com

Exam Code: 211004 Subject Code: 4288

Pe

M.Sc(Mathematics) - 4th Semester

(2519)

Paper: Math-581

Functional Analysis-II

Time allowed: 3 hrs.

Max. Marks: 100

PTO

Note : Attempt two questions from each unit. Each question carries equal marks.

Unit I

- Q.1 Define weak convergence in a normed linear space. Let (x_n) be a weakly convergent sequence in a normed space X, say, $x_n \to {}^w x$. Then prove that
- (a) The weak limit x of (x_n) is unique
- (b) The sequence $(||x_n||)$ is bounded.

Q.2 Let (x_n) be a sequence in a normed space X. Then prove that

- (a) Strong convergence implies weak convergence with the same limit.
- (b) The converse of (a) is not generally true. Justify your answer.
- Q.3 Let A be a set in a normed space X such that every non empty subset of A contains a weak cauchy sequence. Then show that A is bounded.
- Q.4 Prove that in a Hilbert space $H, x_n \to^w x$ if and only if $\langle x_n, z \rangle \to \langle x, z \rangle$ for all $z \in H$.

Unit II

- \mathbb{QS} Let $T:H\to H$ be a bounded linear operator on a Hilbert space H. Then prove that
- (a) If T is self-adjoint, then $\langle Tx, x \rangle$ is real for all $x \in H$
- (b) If H is complex Hilbert space and $\langle Tx, x \rangle$ is real for all $x \in H$, then prove that the operator T is self adjoint.
- Q.6 Prove that a bounded linear operator T on a complex Hilbert space H is unitary iff T is isometric and surjective.
- Q. Prove that the product of two bounded self-adjoint linear operator S and T on a Hilbert space H is self adjoint iff the operator commutes.

www.a2zpapers.com www.a2zpapers.com load free old Question papers gndu, ptu hp board, punjab bo

a2zpapers.com

- Q.8 Let the operator $U: H \to H$ and $V: H \to H$ be unitary where H is a Hilbert space. Then prove that
- (a) U is isometric, thus $||Ux|| = ||x|| \quad \forall x \in H$.
- (b) UV is unitary.
- (c) U is normal.

Unit III

Q.9 Prove that a linear operator on a finite dimensional complex normed space $0 \neq X$ has at least one eigen value.

QLo State and prove Spectral theorem for normal operators.

- Q. Prove that the spectrum $\sigma(T)$ of a bounded linear operator $T: X \to X$ on a complex Banach space X is compact.
- QL Proved that the spectrum $\sigma(T)$ of a bounded linear operator $T: X \to X$ on a complex Banach space X is closed.

Unit IV

- Q.13Define compact linear operator. Let X and Y be normed spaces. Then prove that
- (a) Every compact linear operator $T: X \to Y$ is bounded, and hence continuous.
- (b) If $dim X = \infty$, then the identity operator $I: X \to X$ is not compact.
- Q.14 Prove compactness of $T: l^2 \to l^2$ defined by $y = (e_j) = Tx$ where $e_j = \frac{\zeta_j}{j}$ for $j = 1, 2, 3 \cdots$

Contd... Pg.3

www.a2zpapers.com www.a2zpapers.com mload free old Question papers gndu, ptu hp board, punjab bo

a2zpapers.com

- Q ISLet X and Y be normed spaces and $T: X \to Y$ be a linear operator. Then T is compact iff it maps every bounded sequence (x_n) in X onto a sequence $(T(x_n))$ in Y which has a convergent subsequence.
- Q.16 Let $T: X \to X$ be a compact linear operator and $S: X \to X$ be a bounded linear operator. Then ST and TS are compact.

Unit V

- Q. TDefine Banach algebra and give two examples of a commutative Banach algebra. Justify your answer.
- Q. Let A be a complex Banach algebra with identity e. If $x \in A$ satisfies ||x|| < 1, then e - x is invertible and $(e - x)^{-1} = e + \sum_{j=1}^{\infty} x^j$
- Q.19Let X be a Banach algebra and G denote the set of invertible elements of X. Then
- (a) G is a group under multiplication.
- (b) G is an open subset of X.
- (c) The map $x \to x$ is continuous.

Q19 Derive the formula for the spectral radius.

7676(2519)100

3

www.a2zpapers.com www.a2zpapers.com mload free old Question papers gndu, ptu hp board, punjab boa