Paper: Math-581

Functional Analysis-II

Time allowed: 3 hrs .
Max. Marks: 100

Note : Attempt two questions from each unit. Each question carries equal marks.

Unit I

Q. 1 Define weak convergence in a normed linear space. Let $\left(x_{n}\right)$ be a weakly convergent sequence in a normed space X, say, $x_{n} \rightarrow^{w} x$. Then prove that
(a) The weak limit x of $\left(x_{n}\right)$ is unique
(b) The sequence $\left(\left\|x_{n}\right\|\right)$ is bounded.
Q. 2 Let $\left(x_{n}\right)$ be a sequence in a normed space X. Then prove that
(a) Strong convergence implies weak convergence with the same limit.
(b) The converse of (a) is not generally true. Justify your answer.
Q. 3 Let A be a set in a normed space X such that every non empty subset of A contains a weak cauchy sequence. Then show that A is bounded.
Q. 4 Prove that in a Hilbert space $H, x_{n} \rightarrow^{w} x$ if and only if $\left\langle x_{n}, z\right\rangle \rightarrow\langle x, z\rangle$ for all $z \in H$.

Unit II

Qs Let $T: H \rightarrow H$ be a bounded linear operator on a Hilbert space H. Then prove that
(a) If T is self-adjoint, then $\langle T x, x\rangle$ is real for all $x \in H$
(b) If H is complex Hilbert space and $\langle T x, x\rangle$ is real for all $x \in H$, then prove that the operator T is self adjoint.

Q6 Prove that a bounded linear operator T on a complex Hilbert space H is unitary iff T is isometric and surjective.
Q.. 7 Prove that the product of two bounded self-adjoint linear operator S and T on a Hilbert space H is self adjoint iff the operator commutes.
Q. 8 Let the operator $U: H \rightarrow H$ and $V: H \rightarrow H$ be unitary where H is a Hilbert space. Then prove that
(a) U is isometric, thus $\|U x\|=\|x\| \forall x \in H$.
(b) UV is unitary.
(c) U is normal.

Unit III

Q. 9 Prove that a linear operator on a finite dimensional complex normed space $0 \neq \mathbb{X}$ has atleast one eigen value.

Qto State and prove Spectral theorem for normal operators.
Q.11 Prove that the spectrum $\sigma(T)$ of a bounded linear operator $T: X \rightarrow X$ on a complex Banach space X is compact.

Q12 Proved that the spectrum $\sigma(T)$ of a bounded linear operator $T: X \rightarrow X$ on a complex Banach space X is closed.

Unit IV

Q. 13 Define compact linear operator. Let X and Y be normed spaces. Then prove that
(a) Every compact linear operator $T: X \rightarrow Y$ is bounded, and hence continuous.
(b) If $\operatorname{dim} X=\infty$, then the identity operator $I: X \rightarrow X$ is not compact.
Q. 14 Prove compactness of $T: l^{2} \rightarrow l^{2}$ defined by $y=\left(e_{j}\right)=T x$ where $e_{j}=\frac{\zeta_{j}}{j}$ for $j=1,2,3 \cdots$

(3)

Q 15 Let X and Y be normed spaces and $T: X \rightarrow Y$ be a linear operator. Then T is compact iff it maps every bounded sequence $\left(x_{n}\right)$ in X onto a sequence $\left(T\left(x_{n}\right)\right.$)in Y which has a convergent subsequence.
Q. 16 Let $T: X \rightarrow X$ be a compact linear operator and $S: X \rightarrow X$ be a bounded linear operator. Then $S T$ and $T S$ are compact.

Unit V

Q. 17 Define Banach algebra and give two examples of a commutative Banach algebra. Justify your answer.
Q. 18 Let A be a complex Banach algebra with identity e. If $x \in A$ satisfies $\|x\|<1$, then $e-x$ is invertible and $(e-x)^{-1}=e+\sum_{j=1}^{\infty} x^{j}$
Q. 19 Let X be a Banach algebra and G denote the set of invertible elements of X. Then
(a) G is a group under multiplication.
(b) G is an open subset of X.
(c) The map $x \mid \rightarrow x$ is continuous.

Q10 Derive the formula for the spectral radius.

7676(2519)100

